EUV Actinic Mask Imaging with the SEMATECH Berkeley Actinic Inspection Tool (AIT)

A pathway to 8 nm EUVL and beyond

K. A. Goldberg, I. Mochi, N. Smith, S. Rekawa, J. Macdougall, P. Naulleau Center for X-Ray Optics, Lawrence Berkeley National Laboratory

The current AIT

AIT Imaging Lens Schematic

The AIT is the world's first Fresnel zoneplate microscope with an array of interchangeable, high-magnification lenses—made by CXRO's Nanowriter.

Programmed Defects

Resolution Tests

Mask: IBM J7L16002NA

EUV Image — 200 nm

Design: 216 nm, 88 nm defect

Line size (half-pitch) and Contrast @ 0.35 NA (4x) In practice, these mask features are printed with 4× reduction.

We measure new mask architectures and material combinations that

Measuring the Aerial Image Phase

can display very different line properties—especially for small features.

complex aerial image field given multiple through-focus images.

The proposed AIT5

AIT5 Summary of Advantages

Optics and illumination

- Zoneplate lens array (variable NA)
 Streamlined design for high
 Clean, reliable, no cost
- Coherence and uniformity scanners

Navigation

- Integrated visible-light microscope
- Non-contact mask XYZ stage

Efficiency

throughput

Maintenance

- Accessible architecture
- Straight beam path to CCD

Synchrotron Source

LBNL Engineering

 Built by the same team that runs AIT and MET

AIT5 AIT Actinic imaging Advanced research, to 8-nm; Why? for essential early learning true aerial image testing xyθz (hard navigation) mask stage XYZ zoneplate stage xyz, coupled to mask stage $xy\theta z$, decoupled non-functional working chuck, mask e-chuck kinematic loading θ alignment problems mask surface touching active isolation, vibration isolation greatly slows work coupled stages in situ vis. microscope integrated not available illumination angle & σ $∠6^{\circ} \& \sigma \le 0.2$ $\angle 6-10^{\circ}$ & $\sigma \le 1$ **0.625** (or higher), 6.5 nm (wafer) max NA (4x), resolution 0.35, 17.5 nm (wafer) 200× AIT, 1 sec w/ 2x SNR flux, exposure time low flux, 45 sec exp. illumination uniformity optimized, flat gradients simplified with in situ detectors, system alignment very challenging pupil-fill monitor mask loading / handling SMIF pod / automatic manual trained Ph.D.s operators technician

How many photons are required?

High wavefront quality can be achieved

Field X [um]

Modeling predicts excellent wavefront quality, CD uniformity, and minimal HV bias across a 6-µm-wide sweet spot at 0.3 NA $4\times$. The diameter of the aberration-corrected area varies with the ZP focal length and NA.

Lossless coherence control

